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Abstract 

The Regula F&i method is applied to prediction of trace quantities of air pollutants 
produced by combustion reactions such as those found in industrial point sources. Equilibrium 
quantities of uncombusted fuel generally are quite small, due to the exothermic nature of 
combustion reactions. Accordingly, calculating the maximum theoretical efficiency which may 
be achieved in a combustion process is difficult since the equations describing the equilibrium 
state are stiff. 

After reducing the system to that of one equation and one unknown, the Regula Falsi method 
may be applied in its modified form. The Regula F&i method is modified through the 
introduction of an under-interpolation factor, which accelerates convergence of the numerical 
procedure in a manner similar to the Marquardt method of successive over-relaxation (SOR). 
Analogously, such a modification of the Regula Falsi method is referred to in this work as 
successive under-interpolation (SUI). 

Results indicate an excellent correlation between the under-interpolation factor and the 
number of iterations required to converge upon a solution. 
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1. Introduction 

Emissions of uncombusted substances from industrial point sources containing 
a combustion reaction have received increased attention recently as air pollution has 
been brought to the forefront of environmental concerns. This is in large part due to 
the Clean Air Act Amendments of 1990 and regulations such as the Benzene 
NESHAP (National Emission Standards for Hazardous Air Pollutants) Regulation 
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[l] and the HON (Hazardous Organic NESHAP) Rule [2] which have been promul- 
gated by the Environmental Protection Agency (EPA) as a result of the Clean Air Act. 
Specific point sources of interest include boilers, furnaces, incinerators, and internal 
combustion engines, to name a few. 

In 1985, the EPA, working in conjunction with the State of California, published 
the AP-42 emission factors [3], which allowed prediction of uncombusted substances 
from point sources such as those mentioned previously (vide supra), as well as 
compressors, storage tanks, rail tank cars, tank trucks, service stations, motor vehicle 
tanks, barges, FCC units, cokers, fugitive emissions, and other industrial equipment 
items. The AP-42 emission factors allow facile computation of emissions by multiply- 
ing the appropriate emission factor by the throughput. For example, the emission 
factors for combustion of natural gas are reported in units of kilograms of emissions 
per million cubic meters of fired material. Emissions are broken down into particulate 
matter, sulfur dioxide, sulfur trioxide, nitrogen oxides, and volatile organic com- 
pounds (speciated into methane emissions and nonmethane emissions). 

The AP-42 emission factors were determined by stack tests and equivalent measure- 
ments. Accordingly, their use represents an accurate method of estimating emissions 
from equipment which was tested in determining said emission factors. However, the 
measurements used in determining the AP-42 emission factors were made over 
a decade ago. Advances in combustion equipment efficiency have led many operating 
companies to abandon the practice of using the AP-42 data to measure emissions 
from their equipment, since use of the AP-42 emission factors can result in over- 
reporting emissions from more modernized equipment with improved combustion 
efficiencies. 

This leads to the question of the maximum efficiency which might be obtained, and 
the minimum VOC emissions which might be realized from an industrial point source 
containing a combustion process. The combustion reaction of a saturated aliphatic 
hydrocarbon is as follows: 

CnH2n+2 + (1.5~ + 0.5)02 -+ nCOz + (n + l)HzO. (1) 

The standard enthalpy of reaction may be found by summing the products of the 
standard enthalpies of formation and the stoichiometric coefficients, i.e., 

AHi, = C(viAHfqi) (2) 

The standard enthalpies of formation for reactants and products may be found in the 
JANAF (Joint Army, Navy, Air Force) tables [4]. For the combustion of methane, the 
relevant data are as given in Table 1. 

The enthalpies of formation are determined at standard conditions of 298 K and 
1 atm. Therefore, the enthalpy of combustion which is calculated by the stoichiometri- 
tally weighted sum of the enthalpies of formation is also at standard conditions. This 
is significant because, of course, combustion reactions do not occur at standard 
conditions, but rather at or near the adiabatic flame temperature of the species being 
cornbusted. 

Using the data from Table 1 in conjunction with heat capacity data, the adiabatic 
flame temperature for the combustion of methane, with some given percent excess 
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Table 1 
Standard enthalpies of formation and combustion pertaining to combustion of methane 

Species 

Methane 
Carbon dioxide 
Water 
Oxygen 

Standard enthalpy of formation 
(kcal/mol) 

- 17.889 
- 94.052 
- 57.1979 

0 (by definition) 

Standard enthalpy of combustion 
(kcal/mol) 

- 745.6 
NA 
NA 
NA 

Table 2 
Ideal gas heat capacity data used in the calculation of adiabatic flame temperature (Cp, J/mol; T, K) 

Oxygen Water Carbon dioxide Nitrogen 

- 29.8832 1.13842 x lo-’ - 34.047 9.65064 1 x lo- 3 19.0223 7.96291 x 1Om3 - 29.4119 3.00681 x lOma 

- 4.33719 3.70082 x x 10-s lo-“ - 2.04467 3.29983 x x 10-s lo- * - 7.37067 3.74572 x x lo-’ lo- a 5.45064 5.13186 x x 1O-6 1O-g 
1.01006 x 10-r’ 4.30228 x 10-r* - 8.13304 x 10-r’ - 4.30228 x lo-‘* 

theoretical air, can be calculated. Ideal gas heat capacity data used in the adiabatic 
flame temperature calculation were obtained [S] in the form 

Cp = a + bT + CT’ + dT3 + eT4. (31 
Specifically, the ideal gas heat capacity data used in the calculation were those listed in 
Table 2. 

It should be noted that the heat capacity data are not valid at temperatures above 
1500 K. This bears on the problem at hand since attempting to integrate the heat 
capacity from an assumed inlet temperature of 311 K to the adiabatic flame temper- 
ature, which is well above 1500 K for methane and many other substances of interest, 
would lead to a physically unrealistic result due to the negative coefficient in the 
quartic term for nitrogen. Hence, the adiabatic flame temperature was calculated by 
evaluating the heat capacity at 1500 K and using this “average” heat capacity, i.e., 

AH:x Tad = Tin - - 
c . P, 2%” 

The heat capacity pertains to the flue gas from the combustion process, i.e., the mole- 
weighted average of gases produced by 1 mol of methane. 

Although combustion reactions usually are presumed to go to completion, the 
measurements on which the AP-42 emission factors are based demonstrated that 
some uncombusted fraction of fuel remains in the stack gas. While it has been 
demonstrated that combustion reactions do not proceed to the state of chemical 
equilibrium [6], this would represent the minimum theoretical emission level which 
could be expected from a combustion point source. Accordingly, if combustion 
equipment is found to produce emissions near the theoretical minimum, then 
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Table 3 
Standard Gibbs free energies of formation and combustion pertaining to combustion of methane 

Species Standard Gibbs free energy 
of formation (kcabmol) 

Standard Gibbs free energy 
of combustion (kcal/mol) 

Methane 
Oxygen 
Carbon dioxide 
Water 

- 12.14 
0 (by definition) 

- 94.26 
- 54.6351 

- 199.234 
NA 
NA 
NA 

Table 4 
Calculated parameters pertaining to the combustion of methane 

Tad> K K0 K Tad 

2245 1.343 X 1o’46 6.146 x 103’ 

additional modifications to equipment design will yield little or no reduction in 
emissions. 

It is illustrative to consider the maximum possible conversion of fuel that can be 
achieved, which would be at the state of chemical equilibrium. The adiabatic flame 
temperature, combined with the Gibbs free energy of combustion and the enthalpy of 
combustion, can be used to determine the equilibrium constant at the adiabatic flame 
temperature. The equilibrium constant at standard conditions is found by the relation 

K” = exp( - AG&/RT). 

The standard Gibbs free energy of combustion can be calculated in a manner similar 
to that used to determine the enthalpy of combustion, i.e., 

(see Table 3). 
The Gibbs-Helmholtz relation can be applied to the problem of calculating the 

equilibrium constant at the adiabatic flame temperature by employing the assumption 
that enthalpies of reaction are not nearly as dependent on temperature as Gibbs free 
energies of reaction [7]. This gives the following relation for the equilibrium constant 
at the adiabatic flame temperature: 

K Tad = expC(-M%IRT”) + WCLIVJ’ - (T”)-‘llW 
The results of the calculations represented by Eqs. (4), (5), and (7) are shown in Table 4 
for the combustion of methane. 

Knowledge of the inlet composition allows the computation of the final (i.e., 
equilibrium) composition through the use of the equilibrium constant. Since the 
combustion reaction typically takes place in a boiler or similar combustion device at 
a total pressure of 1 atm, the expression for the equilibrium constant may be written in 
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the following form: 

K Tad = I-ICF = npy. 

In the case of methane combustion, the equilibrium relation is as follows: 

K 
CC02 1 CH,Ol' Pcoz PI&O 

Tad = [CH,][0,]2 = PcH4P& ’ 

(8) 

(9) 

All of the partial pressures in Eq. (9) can be expressed in terms of the partial pressure 
of methane, the species of greatest interest in this work, i.e., 

p co, = Pcoz,max(Pcn‘+ 0 - Pen,) 

P H,O = 2 pCO,, max (PCH4, 0 - PCH,) 

(loa) 

(W 

pO, = pO,,O - 2(PCH,,0 - PCH4) (W 

where Pco~, max is the partial pressure of carbon dioxide which would result if the 
combustion reaction went to completion. Substituting into Eq. (9) gives the following 
result: 

K Tad = 
(a - bPCH,)(2a - 2bpCH,)2 

PCH,(C + 2pCH4)2 ’ 
(11) 

where a, b, and c are constants based on the inlet composition and reaction 
stoichiometry. Thus, Eq. (11) represents a system of one equation with one unknown, 
the equilibrium pressure of methane. Eq. (11) can be rearranged so that it is of the form 
f(P) = 0, i.e., 

K Tad - 
(a - b&,,Wa - 2&H,)’ = o 

PCH4(C + 2pCH4)2 ’ 
(12) 

Attempts to solve Eq. (12) using MathCAD, Lotus, and Qbasic were not successful, 
due to the very large equilibrium constant, and the exceedingly small partial pressure 
of methane which appears in the denominator. However, the reverse reaction may be 
considered, in which carbon dioxide and water form methane and oxygen. This 
essentially results in a rearrangement of Eq. (1 l), with the equilibrium constant for the 
reverse reaction being the reciprocal of the equilibrium constant for the forward 
reaction, i.e., 

which gives 

PCH4(C + 2pCH,)2 

Krev = (U - b&,)(h - 2b&H,)2 
(14) 

and 

K rev - 
(a - bPc,Wa - 2bPcH,)2 = o 

Pc~H,(~ + 2pCH,)2 ’ 
(15) 
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The solution of Eq. (15) could be carried out using a number of numerical methods. 
Successive substitution, Newton’s method, the secant method, and the Regula Falsi 
method (otherwise known as false positioning) are the methods most commonly used 
for the solution of one equation with one unknown. Successive substitution, Newton’s 
method, and the secant method all have significant potential to fail to converge, 
whereas the Regula Falsi method generally requires only that the solution be bounded 
in order to converge. In particular, the Regula Falsi method has a far more reliable 
convergence than either the secant method or Newton’s method. Bounding a solution 
to Eq. (15), or obtaining one value of PCH, which gives a negative value to the 
left-handside of Eq. (15) and another value of PCH, which gives a positive value to the 
right-handside of Eq. (15), does not present a difficult problem, since intuitively it is 
known that the equilibrium value of PCH, is extremely small. For these reasons, the 
Regula Falsi method appears to be a good choice for the solution of Eq. (15). The 
Regula Falsi method has been shown to be capable of solving an equation of the form 
of Eq. (15) [S], but the number of iterations needed is large. 

2. The Regula Fabi method 

Successive substitution, Newton’s method, the secant method, and the Regula Falsi 
method all can be used to generate a numerical solution to an equation of the form 
f(x) = 0, f: Iw + R [or, f(P) = 0, in the case at hand]. The Regula Falsi method is 
similar to the secant method in that it is based on Newton’s method. In contrast to 
Newton’s method, which uses a function value and a derivative at that point to 
generate the next estimate for the solution of a given equation, the Regula Falsi 
method uses only function values to improve upon succeeding estimates for a solution 
to the desired equation. Unlike the secant method, the Regula Falsi method requires 
that the solution be bounded between a positive value of f0 {i.e., f(P,)} and a negative 
value of fi {i.e., f(P,)} ( or vice versa). Subsequent values of Pi+1 are found by the 
relation 

Pi+ 1 = Pi -X tpi - pO) 

(A -fo). (16) 

The Regula Falsi method is shown graphically in Fig. 1. The graphical representation 
of the Regula Falsi method involves drawing a line from the point (PO, fo) to the point 
(PI, fi). This line crosses the P axis at the value of Pz. Subsequently, a line is drawn 
from the point (PO, fo) to the point (Pz, fi). This line crosses the P axis at P3. In this 
manner, the estimates for P are improved upon until the absolute value off is less 
than the required tolerance. 

While it is unlikely that, in contrast to Aitken’s A2 method [12, 131, an exact 
solution will be attained through the use of the Regula Falsi method, nearly any 
requisite level of tolerance may be specified. The main limitation would be the 
precision of the software which is used. It is apparent from Fig. 1 that the Regula Falsi 
method is a simple and reliable method to solve a system consisting of one equation 
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Fig. 1. The Regula Falsi method. 

and one unknown. Moreover, extremely tight tolerances may be specified and 
achieved through the use of the Regula Falsi method. This bears significantly on the 
problem at hand because the value of K,,, is of the order of 10e3’, so a meaningful 
result is expected only if the tolerance is substantially smaller than K,,,. For the work 
at hand, a tolerance of lo- 35 was chosen. 

Unfortunately, the Regula Falsi method has some inherent disadvantages asso- 
ciated with it. Among these are the large number of iterations required for conver- 
gence. The fact that one of the initial estimates always is used to generate a new 
estimate of the solution bears significantly on this. The Regula Falsi method has an 
order of convergence of unity (linear convergence) [ 143. The order of convergence is 
a parameter which describes how quickly the root is approached. In contrast, the 
Newton-Raphson method has an order of convergence of 2 (quadratic convergence). 
The disadvantage of using the Newton-Raphson method (otherwise known as New- 
ton’s method) has been discussed in the Introduction (vide supra), but the question 
remains whether a method with cubic convergence or other higher-order convergence 
should be employed. Unfortunately, numerical methods displaying higher orders of 
convergence result in rapidly increasing complexity of iterative formulae [ 151. Thus, 
there exists a need to modify the Regula Falsi method in such a manner as to preserve 
its feature of a near-certain convergence to very tight tolerances while reducing the 
number of iterations. 

As mentioned previously (vide supra), the Regula Falsi method can solve an 
equation of the form of Eq. (15), but the number of iterations required is large. 
However, the numerical representation of the Regula Falsi method shown in Eq. (16) 
can be modified to the following form: 

Pi+ 1 = Pi -~ Cpi - pO) UF 

(X -fo) ’ (17) 

where the step size between Pi and Pi+ I has been increased by a factor UF (the 
under-interpolation factor). This modification of the Regula Falsi method is similar to 
the Marquardt method of SOR for the solution of differential equations. Analogously, 
it appears appropriate to call this modification of the Regula Falsi method SUI. 
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An advantage of using the method of SUI is that it is more straightforward and 
easier to implement than the methods developed by Werner [9] and Della Dora [lo]. 
It should be noted that other refinements to the Regda Falsi method have been 
proposed previously, including approaching the root from both sides of the domain. 
This is known as the modified false position method [ 111. 

3. Results and discussion 

A final methane pressure of 1.174 x lo-l1 atm was calculated by the program. The 
QBasic code which was used to implement this modification of the Regula Falsi 
method is given in the appendix. The initial steps are to declare variables (Appendix, 
Line lo), and although this normally would not be significant, it merits attention that 
double precision was used due to the extremely tight tolerances required by the 
problem at hand. The Regula Falsi method requires that the solution be bounded, so 
initial estimates are made which bound the solution (Appendix, lines 170 and 220). 
Initial function evaluations (Appendix, Lines 210 and 250) are made based on the 
initial estimates. The most recent function value is tested to determine whether it is 
within the limits of tolerance (Appendix, Line 280). If so, the program prints the 
solution and stops (Appendix, Lines 950-999). Otherwise, the program applies the 
modification of the Regula Falsi method (SUI) in order to update the estimate of the 
solution (Appendix, Line 300). The line in the code which implements the modified 
ReguEa Falsi method (SUI) is 

3OOP2 = Pl - (Fl * FAC * (Pl - P)/(Fl - F)). (18) 

The term FAC in line 300 refers to the under-interpolation factor. One potential 
problem with SUI is that any given under-interpolation step may overshoot the 
solution, i.e., give a solution to the right of the point where F(P) = 0 in Fig. 1. This 
would cause the numerical procedure to fail, because the Regula Falsi method 
depends on the most recent estimate of the solution to give a function evaluation of 
opposite sign of the initial estimate. In other words, at each step the solution must be 
bounded by PO and Pi+ 1. Accordingly, the new estimate is tested for overshoot 
(Appendix, Lines 306-308). If overshoot has occurred, then the under-interpolation 
factor is set to unity and the Regula Falsi method is applied again (Appendix, Lines 
309-310). Thus, overshoot results in the program defaulting to the (unmodified) 
Regula Falsi method. The counter J tallies the number of overshoots. If the method 
overshoots too frequently, then the under-interpolation factor should be set to a lower 
value (Appendix, Line 200). While solution of Eq. (15) did not result in any overshoots 
regardless of the interpolation factor, there is the possibility that overshoot can occur 
in the solution of other non-linear equations. 

The major disadvantage of the Regula Falsi method is that a large number of 
iterations are required to converge on a solution. The counter I tallies the number of 
interpolations required for convergence, and is printed out along with the solution. 
Fig. 2 shows the effect of the under-interpolation factor and the number of iterations 
required for the solution of Eq. (15). Since overshoot and cycling were not observed 
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Under-Interpolation Factor 

Fig. 2. Effect of under-interpolation factor on number of iterations required for convergence. 

(vide supra), the number of iterations decreases monotonically with increasing values 
of the under-interpolation factor. 

It should be noted that a refinement to the method of SUI would be to simply set 
the under-interpolation factor to a slightly lower value if overshoot occurs, instead of 
setting it at unity (Appendix, Line 309). However, this refinement was not needed in 
the present work since overshoot did not occur, so such a refinement remains the 
subject of future work. 

4. Conclusions 

The method of SUI has been shown to be an effective modification to the Regula 
Falsi method for the solution of non-linear equations. The use of an under-interpola- 
tion factor can dramatically reduce the number of iterations required for convergence, 
and can be especially helpful in achieving extremely tight tolerances. 

Appendix 

Complete QBasic Code 

0 TYPE NUMBER 
P AS DOUBLE 
Pl AS DOUBLE 
P2 AS DOUBLE 
F AS DOUBLE 
Fl AS DOUBLE 
F2 AS DOUBLE 
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A AS DOUBLE 
B AS DOUBLE 

END TYPE 
100 

110 
120 
130 
140 
150 
160 
170 
171 
172 
173 
175 
180 
190 
200 
210 
215 
220 
240 
250 
270 
280 
290 
300 
305 
306 
307 
308 
309 
310 
311 
314 
315 
320 
950 
960 
970 
980 
985 
986 
987 
990 
999 

REM REGULA FALSI METHOD (REVERSE REACTION 
METHOD) 
REM VARIABLE DIRECTORY 
REM 
REM P = PRESSURE OF METHANE (Pl, P2. .) 
REM TOL = LIMITS OF TOLERANCE 
REM K = EQUILIBRIUM CONSTANT 
REM F = FUNCTION (Fl, F2. .) 
P = lO^ - 9 
A= l! 
B = l! 
J=O 
I=0 
K = (6.146 * lO”32)” - 1 
TOL = lO^ - 35 
FAC = 1.05 
F=K-((P*(2*P)^2)/((A-P)*(2*A_2*A*P)^2)) 
WRITE “F =“, F 
Pl = lO^ - 12 
REM EVALUATE FUNCTIONS 
Fl=K-((P1*(2*P1)^2)/((A-P1)*(2*A-2*A*Pl)^2)) 
REM CHECK TOLERANCE 
IF ABS(F1) < TOL THEN 950 
REM (MODIFIED) REGULA FALSI ROUTINE 
P2 = Pl - (Fl * FAC *(Pl - P)/(Fl - F)) 
Pl = P2 
REM CHECK FOR OVERSHOOT 
F2=K-((P2*(2*P2)^2)/((A-P2)*(2*A_2*A*P2)^2)) 
IF (F2 * F) < 0 THEN 314 
P2 = Pl - (Fl * (Pl - P)/(Fl - F)) 
Pl =P2 
J=J+l 
WRITE “Pl =“, Pl, “Fl =“, Fl 
I=Ifl 
GOT0 250 
PRINT Pl 
PRINT P2 
PRINT Fl 
PRINT F2 
WRITE “I =” I 
WRITE “FAC =“, FAC 
WRITE “J =“, J 
STOP 
END 
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